Calcium mediates glomerular filtration through calcineurin and mTORC2/Akt signaling.
نویسندگان
چکیده
Alterations to the structure of the glomerular filtration barrier lead to effacement of podocyte foot processes, leakage of albumin, and the development of proteinuria. To better understand the signaling pathways involved in the response of the glomerular filtration barrier to injury, we studied freshly isolated rat glomeruli, which allows for the monitoring and pharmacologic manipulation of early signaling events. Administration of protamine sulfate rapidly damaged the isolated glomeruli, resulting in foot process effacement and albumin leakage. Inhibition of calcium channels and chelation of extracellular calcium reduced protamine sulfate-induced damage, suggesting that calcium signaling plays a critical role in the initial stages of glomerular injury. Calcineurin inhibitors (FK506 and cyclosporine A) and the cathepsin L inhibitor E64 all inhibited protamine sulfate-mediated barrier changes, which suggests that calcium signaling acts, in part, through calcineurin- and cathepsin L-dependent cleavage of synaptopodin, a regulator of actin dynamics. The mTOR inhibitor rapamycin also protected glomeruli, demonstrating that calcium signaling has additional calcineurin-independent components. Furthermore, activation of Akt through mTOR had a direct role on glomerular barrier integrity, and activation of calcium channels mediated this process, likely independent of phosphoinositide 3-kinase. Taken together, these results demonstrate the importance of calcium and related signaling pathways in the structure and function of the glomerular filtration barrier.
منابع مشابه
TORCing up the importance of calcium signaling.
The glomerular filtration barrier is made up of fenestrated endothelium, the endothelial surface layer, glomerular basement membrane, and podocytes forming a slit diaphragm between interdigitating foot processes and the subpodocyte space.1 Disruption of the filtration barrier results in loss of permselectivity and macromolecules such as albumin in urine. There is evidence to support the relativ...
متن کاملMammalian Target of Rapamycin Complex 2 Signaling Pathway Regulates Transient Receptor Potential Cation Channel 6 in Podocytes
Transient receptor potential cation channel 6 (TRPC6) is a nonselective cation channel, and abnormal expression and gain of function of TRPC6 are involved in the pathogenesis of hereditary and nonhereditary forms of renal disease. Although the molecular mechanisms underlying these diseases remain poorly understood, recent investigations revealed that many signaling pathways are involved in regu...
متن کاملmTORC 2:1 for chemotherapy sensitization in glioblastoma.
mTOR signaling is frequently deregulated in cancer, including brain tumors. Although the signaling of mTOR complex 1 (mTORC1) has been subject to intensive investigations and mTORC1 itself has been a well-established cancer drug target for years, the role of the second complex, mTORC2, remains elusive. Tanaka et al. reveal an EGFRvIII-mTORC2-NFκB signaling cascade and demonstrate that mTORC2 me...
متن کاملmTORC2 Is Required for Rit-Mediated Oxidative Stress Resistance
Rit, a member of the Ras family of GTPases, has been shown to promote cell survival in response to oxidative stress, in part by directing an evolutionarily conserved p38 MAPK-Akt survival cascade. Aberrant Rit signaling has recently been implicated as a driver mutation in human cancer, adding importance to the characterization of critical Rit effector pathways. However, the mechanism by which R...
متن کاملmTOR complex 2-Akt signaling at mitochondria- associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology
The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of growth. Mammalian TOR complex 2 (mTORC2) regulates AGC kinase family members and is implicated in various disorders, including cancer and diabetes. Here we report that mTORC2 is localized to the endoplasmic reticulum (ER) subcompartment termed mitochondria-associated ER membrane (MAM). mTORC2 localiza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2011